Moment cinetic (mecanică cuantică)
În mecanica cuantică, un moment cinetic poate fi un moment cinetic orbital (legat de poziția și impulsul sistemului), un moment cinetic de spin (intrinsec sistemului), sau poate fi rezultatul compunerii a două sau mai multe momente cinetice oarecare. Proprietățile generale ale momentului cinetic sunt totodată criterii importante pentru clasificarea stărilor sistemelor atomice și subatomice.
Operatorul moment cinetic
modificareMomentul cinetic este o mărime de tip vector axial.[1] În mecanica cuantică acestei observabile i se asociază un operator hermitic de componente carteziene Se postulează că aceste componente satisfac relațiile de comutare
care extind proprietățile momentului cinetic orbital la un moment cinetic oarecare. Pătratul momentului cinetic
comută cu fiecare din componente:
Din aceste relații rezultă că două componente diferite ale momentului cinetic nu pot avea simultan valori bine determinate, dar pătratul momentului cinetic și una oarecare dintre componente admit un sistem complet comun de vectori proprii.
Valori proprii
modificarePe baza acestor proprietăți ale momentului cinetic se deduc următoarele rezultate fundamentale privitoare la spectrul operatorilor și [2]
Singurele valori proprii posibile ale operatorului sunt de forma unde e un număr întreg sau semiîntreg nenegativ:
Singurele valori proprii posibile ale operatorului sunt de forma unde e un număr întreg sau semiîntreg (pozitiv, negativ sau zero):
Dacă este un vector propriu comun al operatorilor și , adică
atunci singurele valori posibile ale lui sunt cele numere (toate întregi sau toate semiîntregi)
Vectori proprii
modificareOperatorii
care nu sunt hermitici, ci sunt unul adjunctul hermitic al celuilalt, au proprietatea că, aplicați unui vector propriu se obține tot un vector propriu al momentului cinetic, cu același dar cu o valoare a lui crescută, respectiv coborâtă, cu o unitate. Acțiunea acestor operatori de scară (sau de creștere, respectiv de coborâre) este:
Astfel, pornind de la un vector de moment cinetic determinat oarecare, prin aplicarea repetată a operatorilor de scară se pot construi toți cei vectori proprii corespunzători valorii proprii
Note
modificareBibliografie
modificare- Messiah, Albert: Mécanique quantique, Tome II, Dunod, Paris, 1964, pp. 434–441.
- Țițeica, Șerban: Mecanica cuantică, Editura Academiei Republicii Socialiste România, București, 1984, pp. 174–178.