Notația bra-ket
Notația bra-ket, pentru vectorii din spațiul Hilbert, în care sunt descrise stările dinamice ale unui sistem atomic în mecanica cuantică, a fost introdusă de Dirac. Ea utilizează simbolurile bra și ket, adică parantezele unghiulare și bara verticala. Denumirile sunt mnemonice: ele derivă de la cuvântul bracket (care în engleză înseamnă paranteză) și generează notația pentru produsele scalare și elementele de matrice.
Convenții de notație și limbaj
modificareOrice vector din spațiul stărilor se numește vector ket [1] și este notat în forma , unde ket e un simbol identificator.
Dacă un vector din spațiul stărilor apare ca primul factor (la stânga) într-un produs scalar, el se numește vector bra [2] și este notat în forma , unde bra e un simbol identificator.
Produsul scalar dintre vectorii ket și , în această ordine, notat , apare în notația Dirac ca produsul dintre vectorul bra și vectorul ket .
Acțiunea unui operator asupra unui vector ket , notată , este echivalentă cu acțiunea operatorului la stânga asupra vectorului bra corespunzător , notată .
Drept consecință, produsul matricea al operatorului cu vectorii ket și , în ordinea v A u, notat convențional , se scrie în notația Dirac în forma , cu două bare verticale.
Notația Dirac e convenabilă atunci când simbolurile identificatoare (care în notația convențională se scriu de obicei ca indici) sunt foarte complexe.
Note
modificareBibliografie
modificare- Messiah, Albert: Mécanique quantique, Tome II, Dunod, Paris, 1964.
- Țițeica, Șerban: Mecanica cuantică, Editura Academiei Republicii Socialiste România, București, 1984.