În fizică și matematică , armonicele solide sunt soluții ale ecuației lui Laplace în coordonate sferice . Există două feluri de armonice solide:
armonice solide regulate
R
ℓ
m
(
r
)
{\displaystyle R_{\ell }^{m}(\mathbf {r} )}
, care tind către zero în origine
armonice solide neregulate , care sunt singulare în origine.
Ambele seturi de funcții joacă un rol esențial în teoria potențialului , obținute prin rescalarea corespunzătoare a armonicelor sferice .
R
ℓ
m
(
r
)
=
r
ℓ
Y
ℓ
m
(
θ
,
ϕ
)
.
{\displaystyle R_{\ell }^{m}(\mathbf {r} )=r^{\ell }Y_{\ell }^{m}(\theta ,\phi ).}
Derivări, legătura cu armonicele sferice
modificare
Introducând r , θ și φ pentru coordonatele sferice ale unui vector tridimensional r , putem scrie ecuația lui Laplace sub forma următoare:
∇
2
Φ
(
r
)
=
(
1
r
∂
2
∂
r
2
r
−
L
2
ℏ
2
r
2
)
Φ
(
r
)
=
0
,
r
≠
0
,
{\displaystyle \nabla ^{2}\Phi (\mathbf {r} )=\left({\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}r-{\frac {L^{2}}{\hbar ^{2}r^{2}}}\right)\Phi (\mathbf {r} )=0,\qquad \mathbf {r} \neq \mathbf {0} ,}
în care L 2 este pătratul operatorului momentului unghiular :
L
=
−
i
ℏ
(
r
×
∇
)
.
{\displaystyle \mathbf {L} =-i\hbar \,(\mathbf {r} \times \mathbf {\nabla } ).}
Se cunoaște că armonicele sferice Ym l sunt funcții proprii ale lui L 2 :
L
2
Y
ℓ
m
≡
[
L
x
2
+
L
y
2
+
L
z
2
]
Y
ℓ
m
=
ℓ
(
ℓ
+
1
)
Y
ℓ
m
.
{\displaystyle L^{2}Y_{\ell }^{m}\equiv \left[L_{x}^{2}+L_{y}^{2}+L_{z}^{2}\right]Y_{\ell }^{m}=\ell (\ell +1)Y_{\ell }^{m}.}
Substituind Φ(r ) = F (r ) Ym l în ecuația lui Laplace, obținem următoarea ecuație radială și soluția ei generală:
1
r
∂
2
∂
r
2
r
F
(
r
)
=
ℓ
(
ℓ
+
1
)
r
2
F
(
r
)
⟹
F
(
r
)
=
A
r
ℓ
+
B
r
−
ℓ
−
1
.
{\displaystyle {\frac {1}{r}}{\frac {\partial ^{2}}{\partial r^{2}}}rF(r)={\frac {\ell (\ell +1)}{r^{2}}}F(r)\Longrightarrow F(r)=Ar^{\ell }+Br^{-\ell -1}.}
Soluțiile particulare ale ecuației Laplace sunt armonice solide regulate :
R
ℓ
m
(
r
)
≡
4
π
2
ℓ
+
1
r
ℓ
Y
ℓ
m
(
θ
,
φ
)
,
{\displaystyle R_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;r^{\ell }Y_{\ell }^{m}(\theta ,\varphi ),}
și armonice solide neregulate :
I
ℓ
m
(
r
)
≡
4
π
2
ℓ
+
1
Y
ℓ
m
(
θ
,
φ
)
r
ℓ
+
1
.
{\displaystyle I_{\ell }^{m}(\mathbf {r} )\equiv {\sqrt {\frac {4\pi }{2\ell +1}}}\;{\frac {Y_{\ell }^{m}(\theta ,\varphi )}{r^{\ell +1}}}.}
Normalizarea lui Racah (cunoscută și ca seminormalizarea lui Schmidt) se aplică ambelor funcții:
∫
0
π
sin
θ
d
θ
∫
0
2
π
d
φ
R
ℓ
m
(
r
)
∗
R
ℓ
m
(
r
)
=
4
π
2
ℓ
+
1
r
2
ℓ
{\displaystyle \int _{0}^{\pi }\sin \theta \,d\theta \int _{0}^{2\pi }d\varphi \;R_{\ell }^{m}(\mathbf {r} )^{*}\;R_{\ell }^{m}(\mathbf {r} )={\frac {4\pi }{2\ell +1}}r^{2\ell }}
(și analog pentru armonicele solide neregulate). Se preferă această normalizare Racah deoarece în multe aplicații factorul normalizării apare neschimbat în toate derivările.
Translația armonicelor solide regulate conduce la o dezvoltare finită:
R
ℓ
m
(
r
+
a
)
=
∑
λ
=
0
ℓ
(
2
ℓ
2
λ
)
1
/
2
∑
μ
=
−
λ
λ
R
λ
μ
(
r
)
R
ℓ
−
λ
m
−
μ
(
a
)
⟨
λ
,
μ
;
ℓ
−
λ
,
m
−
μ
|
ℓ
m
⟩
,
{\displaystyle R_{\ell }^{m}(\mathbf {r} +\mathbf {a} )=\sum _{\lambda =0}^{\ell }{\binom {2\ell }{2\lambda }}^{1/2}\sum _{\mu =-\lambda }^{\lambda }R_{\lambda }^{\mu }(\mathbf {r} )R_{\ell -\lambda }^{m-\mu }(\mathbf {a} )\;\langle \lambda ,\mu ;\ell -\lambda ,m-\mu |\ell m\rangle ,}
în care coeficientul Clebsch-Gordan este dat de:
⟨
λ
,
μ
;
ℓ
−
λ
,
m
−
μ
|
ℓ
m
⟩
=
(
ℓ
+
m
λ
+
μ
)
1
/
2
(
ℓ
−
m
λ
−
μ
)
1
/
2
(
2
ℓ
2
λ
)
−
1
/
2
.
{\displaystyle \langle \lambda ,\mu ;\ell -\lambda ,m-\mu |\ell m\rangle ={\binom {\ell +m}{\lambda +\mu }}^{1/2}{\binom {\ell -m}{\lambda -\mu }}^{1/2}{\binom {2\ell }{2\lambda }}^{-1/2}.}
Dezvoltarea similară pentru armonicele solide neregulate conduce la o serie infinită:
I
ℓ
m
(
r
+
a
)
=
∑
λ
=
0
∞
(
2
ℓ
+
2
λ
+
1
2
λ
)
1
/
2
∑
μ
=
−
λ
λ
R
λ
μ
(
r
)
I
ℓ
+
λ
m
−
μ
(
a
)
⟨
λ
,
μ
;
ℓ
+
λ
,
m
−
μ
|
ℓ
m
⟩
{\displaystyle I_{\ell }^{m}(\mathbf {r} +\mathbf {a} )=\sum _{\lambda =0}^{\infty }{\binom {2\ell +2\lambda +1}{2\lambda }}^{1/2}\sum _{\mu =-\lambda }^{\lambda }R_{\lambda }^{\mu }(\mathbf {r} )I_{\ell +\lambda }^{m-\mu }(\mathbf {a} )\;\langle \lambda ,\mu ;\ell +\lambda ,m-\mu |\ell m\rangle }
cu
|
r
|
≤
|
a
|
{\displaystyle |r|\leq |a|\,}
. Cantitatea dintre paranteze este tot coeficientul Clebsch-Gordan:
⟨
λ
,
μ
;
ℓ
+
λ
,
m
−
μ
|
ℓ
m
⟩
=
(
−
1
)
λ
+
μ
(
ℓ
+
λ
−
m
+
μ
λ
+
μ
)
1
/
2
(
ℓ
+
λ
+
m
−
μ
λ
−
μ
)
1
/
2
(
2
ℓ
+
2
λ
+
1
2
λ
)
−
1
/
2
.
{\displaystyle \langle \lambda ,\mu ;\ell +\lambda ,m-\mu |\ell m\rangle =(-1)^{\lambda +\mu }{\binom {\ell +\lambda -m+\mu }{\lambda +\mu }}^{1/2}{\binom {\ell +\lambda +m-\mu }{\lambda -\mu }}^{1/2}{\binom {2\ell +2\lambda +1}{2\lambda }}^{-1/2}.}
Teorema de sumare a fost demonstrată în multe feluri de diverși autori. Vezi cele două exemple diferite de demonstrare:
R. J. A. Tough and A. J. Stone, J. Phys. A: Math. Gen. Vol. 10 , p. 1261 (1977)
M. J. Caola, J. Phys. A: Math. Gen. Vol. 11 , p. L23 (1978)
Printr-o simplă combinație liniară de armonice solide de ±m aceste funcții sunt transformate în funcții reale. Armonicele solide regulate reale, exprimate în coordonate carteziene , sunt polinoame omogene de ordinul l în x , y și z . Forma explicită a acestor polinoame are o anumită importanță. De exemplu, ele apar sub forma orbitei atomice sferice și a momentelor multipolare reale. Expresii carteziene explicite vor fi date pentru armonicele regulate reale.
Scriem în acord cu definiția de mai sus:
R
ℓ
m
(
r
,
θ
,
φ
)
=
(
−
1
)
(
m
+
|
m
|
)
/
2
r
ℓ
Θ
ℓ
|
m
|
(
cos
θ
)
e
i
m
φ
,
−
ℓ
≤
m
≤
ℓ
,
{\displaystyle R_{\ell }^{m}(r,\theta ,\varphi )=(-1)^{(m+|m|)/2}\;r^{\ell }\;\Theta _{\ell }^{|m|}(\cos \theta )e^{im\varphi },\qquad -\ell \leq m\leq \ell ,}
cu
Θ
ℓ
m
(
cos
θ
)
≡
[
(
ℓ
−
m
)
!
(
ℓ
+
m
)
!
]
1
/
2
sin
m
θ
d
m
P
ℓ
(
cos
θ
)
d
cos
m
θ
,
m
≥
0
,
{\displaystyle \Theta _{\ell }^{m}(\cos \theta )\equiv \left[{\frac {(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\,\sin ^{m}\theta \,{\frac {d^{m}P_{\ell }(\cos \theta )}{d\cos ^{m}\theta }},\qquad m\geq 0,}
în care
P
ℓ
(
cos
θ
)
{\displaystyle P_{\ell }(\cos \theta )}
este un polinom Legendre de ordin l . Faza dependentă m este cunoscută drept faza Condon–Shortley
Următoarea expresie definește armonicele solide regulate reale:
(
C
ℓ
m
S
ℓ
m
)
≡
2
r
ℓ
Θ
ℓ
m
(
cos
m
φ
sin
m
φ
)
=
1
2
(
(
−
1
)
m
1
−
(
−
1
)
m
i
i
)
(
R
ℓ
m
R
ℓ
−
m
)
,
m
>
0.
{\displaystyle {\begin{pmatrix}C_{\ell }^{m}\\S_{\ell }^{m}\end{pmatrix}}\equiv {\sqrt {2}}\;r^{\ell }\;\Theta _{\ell }^{m}{\begin{pmatrix}\cos m\varphi \\\sin m\varphi \end{pmatrix}}={\frac {1}{\sqrt {2}}}{\begin{pmatrix}(-1)^{m}&\quad 1\\-(-1)^{m}i&\quad i\end{pmatrix}}{\begin{pmatrix}R_{\ell }^{m}\\R_{\ell }^{-m}\end{pmatrix}},\qquad m>0.}
iar pentru m = 0:
C
ℓ
0
≡
R
ℓ
0
.
{\displaystyle C_{\ell }^{0}\equiv R_{\ell }^{0}.}
Deoarece transformarea se face prin intermediul matricii unitate , normalizarea armonicelor solide reale sau complexe este aceeași.
Dacă scriem u = cos θ, derivata m a polinoamelor Legendre poate fi scrisă prin următoare dezvoltare în u :
d
m
P
ℓ
(
u
)
d
u
m
=
∑
k
=
0
⌊
(
ℓ
−
m
)
/
2
⌋
γ
ℓ
k
(
m
)
u
ℓ
−
2
k
−
m
{\displaystyle {\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;u^{\ell -2k-m}}
cu
γ
ℓ
k
(
m
)
=
(
−
1
)
k
2
−
ℓ
(
ℓ
k
)
(
2
ℓ
−
2
k
ℓ
)
(
ℓ
−
2
k
)
!
(
ℓ
−
2
k
−
m
)
!
.
{\displaystyle \gamma _{\ell k}^{(m)}=(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}{\frac {(\ell -2k)!}{(\ell -2k-m)!}}.}
Deoarece z = r cosθ urmează că, acestă derivată înmulțită cu o putere corespunzătoare a lui r , este un simplu polinom în z :
Π
ℓ
m
(
z
)
≡
r
ℓ
−
m
d
m
P
ℓ
(
u
)
d
u
m
=
∑
k
=
0
⌊
(
ℓ
−
m
)
/
2
⌋
γ
ℓ
k
(
m
)
r
2
k
z
ℓ
−
2
k
−
m
.
{\displaystyle \Pi _{\ell }^{m}(z)\equiv r^{\ell -m}{\frac {d^{m}P_{\ell }(u)}{du^{m}}}=\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }\gamma _{\ell k}^{(m)}\;r^{2k}\;z^{\ell -2k-m}.}
Scriind x = r sinθcosφ și y = r sinθsinφ:
r
m
sin
m
θ
cos
m
φ
=
1
2
[
(
r
sin
θ
e
i
φ
)
m
+
(
r
sin
θ
e
−
i
φ
)
m
]
=
1
2
[
(
x
+
i
y
)
m
+
(
x
−
i
y
)
m
]
{\displaystyle r^{m}\sin ^{m}\theta \cos m\varphi ={\frac {1}{2}}\left[(r\sin \theta e^{i\varphi })^{m}+(r\sin \theta e^{-i\varphi })^{m}\right]={\frac {1}{2}}\left[(x+iy)^{m}+(x-iy)^{m}\right]}
De asemenea:
r
m
sin
m
θ
sin
m
φ
=
1
2
i
[
(
r
sin
θ
e
i
φ
)
m
−
(
r
sin
θ
e
−
i
φ
)
m
]
=
1
2
i
[
(
x
+
i
y
)
m
−
(
x
−
i
y
)
m
]
.
{\displaystyle r^{m}\sin ^{m}\theta \sin m\varphi ={\frac {1}{2i}}\left[(r\sin \theta e^{i\varphi })^{m}-(r\sin \theta e^{-i\varphi })^{m}\right]={\frac {1}{2i}}\left[(x+iy)^{m}-(x-iy)^{m}\right].}
Mai mult:
A
m
(
x
,
y
)
≡
1
2
[
(
x
+
i
y
)
m
+
(
x
−
i
y
)
m
]
=
∑
p
=
0
m
(
m
p
)
x
p
y
m
−
p
cos
(
m
−
p
)
π
2
{\displaystyle A_{m}(x,y)\equiv {\frac {1}{2}}\left[(x+iy)^{m}+(x-iy)^{m}\right]=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\cos(m-p){\frac {\pi }{2}}}
și
B
m
(
x
,
y
)
≡
1
2
i
[
(
x
+
i
y
)
m
−
(
x
−
i
y
)
m
]
=
∑
p
=
0
m
(
m
p
)
x
p
y
m
−
p
sin
(
m
−
p
)
π
2
.
{\displaystyle B_{m}(x,y)\equiv {\frac {1}{2i}}\left[(x+iy)^{m}-(x-iy)^{m}\right]=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\sin(m-p){\frac {\pi }{2}}.}
C
ℓ
m
(
x
,
y
,
z
)
=
[
(
2
−
δ
m
0
)
(
ℓ
−
m
)
!
(
ℓ
+
m
)
!
]
1
/
2
Π
ℓ
m
(
z
)
A
m
(
x
,
y
)
,
m
=
0
,
1
,
…
,
ℓ
{\displaystyle C_{\ell }^{m}(x,y,z)=\left[{\frac {(2-\delta _{m0})(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z)\;A_{m}(x,y),\qquad m=0,1,\ldots ,\ell }
S
ℓ
m
(
x
,
y
,
z
)
=
[
2
(
ℓ
−
m
)
!
(
ℓ
+
m
)
!
]
1
/
2
Π
ℓ
m
(
z
)
B
m
(
x
,
y
)
,
m
=
1
,
2
,
…
,
ℓ
.
{\displaystyle S_{\ell }^{m}(x,y,z)=\left[{\frac {2(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z)\;B_{m}(x,y),\qquad m=1,2,\ldots ,\ell .}
Sunt listate cele mai scăzute funcții până la l = 5 inclusiv.
Aici
Π
¯
ℓ
m
(
z
)
≡
[
(
2
−
δ
m
0
)
(
ℓ
−
m
)
!
(
ℓ
+
m
)
!
]
1
/
2
Π
ℓ
m
(
z
)
.
{\displaystyle {\bar {\Pi }}_{\ell }^{m}(z)\equiv \left[{\tfrac {(2-\delta _{m0})(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\Pi _{\ell }^{m}(z).}
Π
¯
0
0
=
1
Π
¯
3
1
=
1
4
6
(
5
z
2
−
r
2
)
Π
¯
4
4
=
1
8
35
Π
¯
1
0
=
z
Π
¯
3
2
=
1
2
15
z
Π
¯
5
0
=
1
8
z
(
63
z
4
−
70
z
2
r
2
+
15
r
4
)
Π
¯
1
1
=
1
Π
¯
3
3
=
1
4
10
Π
¯
5
1
=
1
8
15
(
21
z
4
−
14
z
2
r
2
+
r
4
)
Π
¯
2
0
=
1
2
(
3
z
2
−
r
2
)
Π
¯
4
0
=
1
8
(
35
z
4
−
30
r
2
z
2
+
3
r
4
)
Π
¯
5
2
=
1
4
105
(
3
z
2
−
r
2
)
z
Π
¯
2
1
=
3
z
Π
¯
4
1
=
10
4
z
(
7
z
2
−
3
r
2
)
Π
¯
5
3
=
1
16
70
(
9
z
2
−
r
2
)
Π
¯
2
2
=
1
2
3
Π
¯
4
2
=
1
4
5
(
7
z
2
−
r
2
)
Π
¯
5
4
=
3
8
35
z
Π
¯
3
0
=
1
2
z
(
5
z
2
−
3
r
2
)
Π
¯
4
3
=
1
4
70
z
Π
¯
5
5
=
3
16
14
{\displaystyle {\begin{aligned}{\bar {\Pi }}_{0}^{0}&=1&{\bar {\Pi }}_{3}^{1}&={\frac {1}{4}}{\sqrt {6}}(5z^{2}-r^{2})&{\bar {\Pi }}_{4}^{4}&={\frac {1}{8}}{\sqrt {35}}\\{\bar {\Pi }}_{1}^{0}&=z&{\bar {\Pi }}_{3}^{2}&={\frac {1}{2}}{\sqrt {15}}\;z&{\bar {\Pi }}_{5}^{0}&={\frac {1}{8}}z(63z^{4}-70z^{2}r^{2}+15r^{4})\\{\bar {\Pi }}_{1}^{1}&=1&{\bar {\Pi }}_{3}^{3}&={\frac {1}{4}}{\sqrt {10}}&{\bar {\Pi }}_{5}^{1}&={\frac {1}{8}}{\sqrt {15}}(21z^{4}-14z^{2}r^{2}+r^{4})\\{\bar {\Pi }}_{2}^{0}&={\frac {1}{2}}(3z^{2}-r^{2})&{\bar {\Pi }}_{4}^{0}&={\frac {1}{8}}(35z^{4}-30r^{2}z^{2}+3r^{4})&{\bar {\Pi }}_{5}^{2}&={\frac {1}{4}}{\sqrt {105}}(3z^{2}-r^{2})z\\{\bar {\Pi }}_{2}^{1}&={\sqrt {3}}z&{\bar {\Pi }}_{4}^{1}&={\frac {\sqrt {10}}{4}}z(7z^{2}-3r^{2})&{\bar {\Pi }}_{5}^{3}&={\frac {1}{16}}{\sqrt {70}}(9z^{2}-r^{2})\\{\bar {\Pi }}_{2}^{2}&={\frac {1}{2}}{\sqrt {3}}&{\bar {\Pi }}_{4}^{2}&={\frac {1}{4}}{\sqrt {5}}(7z^{2}-r^{2})&{\bar {\Pi }}_{5}^{4}&={\frac {3}{8}}{\sqrt {35}}z\\{\bar {\Pi }}_{3}^{0}&={\frac {1}{2}}z(5z^{2}-3r^{2})&{\bar {\Pi }}_{4}^{3}&={\frac {1}{4}}{\sqrt {70}}\;z&{\bar {\Pi }}_{5}^{5}&={\frac {3}{16}}{\sqrt {14}}\\\end{aligned}}}
Cele mai scăzute funcții
A
m
(
x
,
y
)
{\displaystyle A_{m}(x,y)\,}
și
B
m
(
x
,
y
)
{\displaystyle B_{m}(x,y)\,}
sunt:
m
A m
B m
0
1
{\displaystyle 1\,}
0
{\displaystyle 0\,}
1
x
{\displaystyle x\,}
y
{\displaystyle y\,}
2
x
2
−
y
2
{\displaystyle x^{2}-y^{2}\,}
2
x
y
{\displaystyle 2xy\,}
3
x
3
−
3
x
y
2
{\displaystyle x^{3}-3xy^{2}\,}
3
x
2
y
−
y
3
{\displaystyle 3x^{2}y-y^{3}\,}
4
x
4
−
6
x
2
y
2
+
y
4
{\displaystyle x^{4}-6x^{2}y^{2}+y^{4}\,}
4
x
3
y
−
4
x
y
3
{\displaystyle 4x^{3}y-4xy^{3}\,}
5
x
5
−
10
x
3
y
2
+
5
x
y
4
{\displaystyle x^{5}-10x^{3}y^{2}+5xy^{4}\,}
5
x
4
y
−
10
x
2
y
3
+
y
5
{\displaystyle 5x^{4}y-10x^{2}y^{3}+y^{5}\,}
De exemplu, partea unghiulară a celei de a noua sferică normalizată g a orbitei atomice este:
C
4
2
(
x
,
y
,
z
)
=
9
4
π
5
16
(
7
z
2
−
r
2
)
(
x
2
−
y
2
)
.
{\displaystyle C_{4}^{2}(x,y,z)={\sqrt {\frac {9}{4\pi }}}{\sqrt {\frac {5}{16}}}(7z^{2}-r^{2})(x^{2}-y^{2}).}
Una din cele 7 componente ale multipolului real de ordinul 3(octupol) ale unui sistem de N sarcini q i este:
S
3
1
(
x
,
y
,
z
)
=
1
4
6
∑
i
=
1
N
q
i
(
5
z
i
2
−
r
i
2
)
y
i
.
{\displaystyle S_{3}^{1}(x,y,z)={\frac {1}{4}}{\sqrt {6}}\sum _{i=1}^{N}q_{i}(5z_{i}^{2}-r_{i}^{2})y_{i}.}
Următoarele formule exprimă armonicele sferice normalizate în coordonate carteziene (faza Condon-Shortley):
r
ℓ
(
Y
ℓ
m
Y
ℓ
−
m
)
=
[
2
ℓ
+
1
4
π
]
1
/
2
Π
¯
ℓ
m
(
z
)
(
(
−
1
)
m
(
A
m
+
i
B
m
)
/
2
(
A
m
−
i
B
m
)
/
2
)
,
m
>
0.
{\displaystyle r^{\ell }\,{\begin{pmatrix}Y_{\ell }^{m}\\Y_{\ell }^{-m}\end{pmatrix}}=\left[{\frac {2\ell +1}{4\pi }}\right]^{1/2}{\bar {\Pi }}_{\ell }^{m}(z){\begin{pmatrix}(-1)^{m}(A_{m}+iB_{m})/{\sqrt {2}}\\\qquad (A_{m}-iB_{m})/{\sqrt {2}}\\\end{pmatrix}},\qquad m>0.}
iar pentru m = 0:
r
ℓ
Y
ℓ
0
≡
2
ℓ
+
1
4
π
Π
¯
ℓ
0
.
{\displaystyle r^{\ell }\,Y_{\ell }^{0}\equiv {\sqrt {\frac {2\ell +1}{4\pi }}}{\bar {\Pi }}_{\ell }^{0}.}
Aici
A
m
(
x
,
y
)
=
∑
p
=
0
m
(
m
p
)
x
p
y
m
−
p
cos
(
(
m
−
p
)
π
2
)
,
{\displaystyle A_{m}(x,y)=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\cos((m-p){\frac {\pi }{2}}),}
B
m
(
x
,
y
)
=
∑
p
=
0
m
(
m
p
)
x
p
y
m
−
p
sin
(
(
m
−
p
)
π
2
)
,
{\displaystyle B_{m}(x,y)=\sum _{p=0}^{m}{\binom {m}{p}}x^{p}y^{m-p}\sin((m-p){\frac {\pi }{2}}),}
iar pentru m > 0:
Π
¯
ℓ
m
(
z
)
=
[
(
ℓ
−
m
)
!
(
ℓ
+
m
)
!
]
1
/
2
∑
k
=
0
⌊
(
ℓ
−
m
)
/
2
⌋
(
−
1
)
k
2
−
ℓ
(
ℓ
k
)
(
2
ℓ
−
2
k
ℓ
)
(
ℓ
−
2
k
)
!
(
ℓ
−
2
k
−
m
)
!
r
2
k
z
ℓ
−
2
k
−
m
.
{\displaystyle {\bar {\Pi }}_{\ell }^{m}(z)=\left[{\frac {(\ell -m)!}{(\ell +m)!}}\right]^{1/2}\sum _{k=0}^{\left\lfloor (\ell -m)/2\right\rfloor }(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}{\frac {(\ell -2k)!}{(\ell -2k-m)!}}\;r^{2k}\;z^{\ell -2k-m}.}
Pentru m = 0:
Π
¯
ℓ
0
(
z
)
=
∑
k
=
0
⌊
ℓ
/
2
⌋
(
−
1
)
k
2
−
ℓ
(
ℓ
k
)
(
2
ℓ
−
2
k
ℓ
)
r
2
k
z
ℓ
−
2
k
.
{\displaystyle {\bar {\Pi }}_{\ell }^{0}(z)=\sum _{k=0}^{\left\lfloor \ell /2\right\rfloor }(-1)^{k}2^{-\ell }{\binom {\ell }{k}}{\binom {2\ell -2k}{\ell }}\;r^{2k}\;z^{\ell -2k}.}
Folosind expresiile de mai sus pentru
Π
¯
m
ℓ
(
z
)
{\displaystyle {\bar {\Pi }}_{m}^{\ell }(z)}
,
A
m
(
x
,
y
)
{\displaystyle A_{m}(x,y)\,}
și
B
m
(
x
,
y
)
{\displaystyle B_{m}(x,y)\,}
obținem:
Y
3
1
=
−
1
r
3
[
7
4
π
⋅
3
16
]
1
/
2
(
5
z
2
−
r
2
)
(
x
+
i
y
)
=
−
[
7
4
π
⋅
3
16
]
1
/
2
(
5
cos
2
θ
−
1
)
(
sin
θ
e
i
φ
)
{\displaystyle Y_{3}^{1}=-{\frac {1}{r^{3}}}\left[{\tfrac {7}{4\pi }}\cdot {\tfrac {3}{16}}\right]^{1/2}(5z^{2}-r^{2})(x+iy)=-\left[{\tfrac {7}{4\pi }}\cdot {\tfrac {3}{16}}\right]^{1/2}(5\cos ^{2}\theta -1)(\sin \theta e^{i\varphi })}
Y
4
−
2
=
1
r
4
[
9
4
π
⋅
5
32
]
1
/
2
(
7
z
2
−
r
2
)
(
x
−
i
y
)
2
=
[
9
4
π
⋅
5
32
]
1
/
2
(
7
cos
2
θ
−
1
)
(
sin
2
θ
e
−
2
i
φ
)
{\displaystyle Y_{4}^{-2}={\frac {1}{r^{4}}}\left[{\tfrac {9}{4\pi }}\cdot {\tfrac {5}{32}}\right]^{1/2}(7z^{2}-r^{2})(x-iy)^{2}=\left[{\tfrac {9}{4\pi }}\cdot {\tfrac {5}{32}}\right]^{1/2}(7\cos ^{2}\theta -1)(\sin ^{2}\theta e^{-2i\varphi })}
Se poate verifica că aceste corespund cu funcțiile listate în tabelul armonicelor sferice .