În algebra liniară, conceptele de minor și complement algebric sunt necesare dezvoltării unui determinant cu ajutorul teoremei lui Laplace.
Fie
o matrice de ordinul n.
Prin minorul complementar al elementului
se înțelege determinantul de ordinul n-1 și notat
Complementul algebric al lui
este numărul
Există relațiile:

Pentru
se obține:

(formule de dezvoltare a determinantului după elementele unei linii sau unei coloane)
Fie acum un
Se numește minor de ordinul r în
un determinant
format cu r linii și r coloane din
Se numește minor complementar minorului
de ordin r, minorul
obținut din
prin suprimarea celor r linii și r coloane ale lui
Complementul algebric al minorului
este numărul
fiind suma indicilor liniilor și coloanelor care determină