Momentul forței (sau cuplu[1][2][3][4][5]) este o mărime fizică vectorială ce exprimă cantitativ capacitatea forței de a roti un rigid in jurul unei drepte ce trece printr-un punct și este perpendiculara pe planul format de dreapta suport a forței și punctul respectiv. Este important în funcționarea unor aparate de zbor ca de exemplu elicopterul.

Relația dintre forță (F) și cuplu (τ) în cazul unui corp în rotație

Momentul unei forțe în raport cu un punct

modificare
 
Momentul unei forțe în raport cu un punct

Momentul forței   , care acționează asupra unui solid rigid ,în raport cu punctul O, numit pol, este o mărime vectorială notată cu   sau mai simplu notată cu   și reprezintă produsul vectorial dintre vectorul de poziție care unește punctul O cu un punct oarecare de pe suportul forței și forță:

 
unde:
  este unghiul dintre   și  
  și este brațul forței F fața de punctul O , care reprezintă distanța de la punctul O până la dreapta suport a forței F, adică lungimea perpendicularei dusă din punctul O pe dreapta suport a forței F.

Momentul unei forțe   în raport cu un punct O se exprimă analitic în raport cu sistemul de referință cartezian triortogonal drept OXZY prin relația:

 
 

unde:

 
 
 

sunt proiecțiile momentului forței F in raport cu punctul O pe axele Ox , Oy si Oz

Caracteristicile vectorului moment:

  • punctul de aplicație este în O, ceea ce înseamnă ca vectorul moment este un vector legat;
  • direcția este normală pe planul format de O și suportul forței;
  • sensul este corespunzător triedrului drept;
  • mărimea (modulul) acestuia este:
 

unde d = OB se numește brațul forței și reprezinta lungimea perpendicularei dusă din O pe dreapta suport a forței.

Proprietăți

modificare
  • Momentul unei forțe în raport cu un punct arbitrar de pe dreapta suport a forței este întotdeauna nul.
  ,deoarece   si   sunt coliniari.
  • Momentul unei forțe în raport cu un punct care nu aparține dreptei suport al forței este intotdeauna constant la alunecarea forței pe dreapta sa suport.

Demonstrație:

modificare

 

deoarece BA și F sunt vectori coliniari.

  • Punctul O se deplasează pe o dreaptă paralelă cu (Δ).
  • Momentul unei forțe se schimbă dacă se schimbă polul din O în O1:
 
iar   este legea de variație a momentului unei forțe la schimbarea punctului in raport cu care este calculat.
 
Momentul unei forțe în raport cu o axă

Momentul unei forțe în raport cu o axă

modificare
 
Componentele forței

Momentul unei forțe în raport cu o axă, de versor   este proiecția pe acea axă a momentului forței calculat în raport cu un punct oarecare al axei respective:

 

Proprietăți

modificare
  •   dacă cei trei vectori sunt coplanari: forța este paralelă cu axa Δ sau suportul forței intersectează axa.
  •   nu depinde de alegerea punctului O pe axa Δ:

Astfel, dacă se consideră un alt punct O1:

 
  • Momentul unei forțe în raport cu o axă Δ este egal cu mărime momentului produs de componenta forței dintr-un plan normal pe axă, calculat în raport cu punctul în care axa Δ intersectează planul normal:
 

Terminologie

modificare
  • Momentul forței este tradițional notat de fizicienii români cu MF, spre deosebire de fizicienii anglofoni, care îl notează cu litera greacă tau (τ).
  • O formă tehnică a momentului forței e un cuplu de forțe constând din două forțe antagoniste acționând diametral la capetele aceluiași braț, dând momentul:
 

Vezi și

modificare

Bibliografie

modificare
  • Mercheș, Ioan și Burlacu, Lucian: Mecanică analitică și a mediilor deformabile, Editura didactică și pedagogică, București, 1983.
  1. ^ „torque - WordReference Dicţionar englez-român”. www.wordreference.com. Accesat în . 
  2. ^ „DeepL Translate”. 
  3. ^ „Translate 'Torque' into Romanian”. Lingvanex - Reliable Translation Services for Text, Documents and Audio. Accesat în . 
  4. ^ „Traducere 'torque' – Dicţionar română-Engleză | Glosbe”. ro.glosbe.com. Accesat în . 
  5. ^ Gabriel, Grosoiu (). „Cuplul motor: ce este și cum se calculează”. AUTOVIT Blog: Sfaturi auto utile, alese de profesionisti. Accesat în .