Mulțime compactă

Mulțimea compactă este o noțiune folosită în analiză matematică și în topologie care desemnează acele submulțimi ale mulțimii numerelor reale care sunt mărginite și închise.


Formulări echivalenteModificare

O submulțime a mulțimii numerelor reale   este compactă dacă este satisfăcută una din condițiile (echivalente:)

  • Orice șir de elemente ale submulțimii admite un subșir convergent, a cărui limită aparține mulțimii (criteriul cu șiruri).
  • Orice acoperire deschisă admite o subacoperire finită (criteriul acoperirii).

GeneralizareModificare

Noțiunea se poate generaliza pe   sau pentru spații vectoriale infinit-dimensionale.


ExempleModificare

Fie       cu  .

  • Intervalulul închis       este compact. Orice șir convergent cu termeni din acest interval are limita situată pe  .
  • Intervalele semideschise       și intervalul deschis   nu sunt compacte deoarece nu sunt închise. Există șiruri care converg la fiecare din extremitățile intervalelor.
  • Mulțimea numerelor reale       nu este compactă, deoarece nu este nici închisă, nici mărginită. Există șiruri de numere reale cu orice subșir crescător nemărginit (De exemplu mulțimea numerelor naturale    ).


Vezi șiModificare

Legături externeModificare