Ecuațiile lui Maxwell constituie fundamentarea matematică a principiilor electrodinamicii clasice, teoria macroscopică a câmpului electromagnetic. În memoriul intitulat O teorie dinamică a câmpului electromagnetic (A Dynamical Theory of the Electromagnetic Field), publicat în 1864, Maxwell a formulat „ecuațiile generale ale câmpului electromagnetic” ca „douăzeci de ecuații” pentru „douăzeci de cantități variabile”, precizând că „aceste ecuații sunt deci suficiente pentru a determina toate cantitățile care apar în ele, dacă ne sunt cunoscute condițiile problemei.” [1] Ele au fost reformulate în 1884, după moartea lui Maxwell, de Heaviside, ca ecuații pentru mărimile cu semnificație fizică directă (câmpul electric și câmpul magnetic), folosind notația compactă a analizei vectoriale.

Ecuațiile lui Maxwell în forma generală

modificare

Sub forma de ecuații diferențiale (în variabilele independente poziție   și timp  ), ecuațiile lui Maxwell leagă câmpul electromagnetic (vectorul câmp electric   și vectorul câmp magnetic  ) de sursele sale (densitatea de sarcină electrică   și densitatea de curent electric  ). Sub forma de ecuații integrale, ele leagă fluxul printr-o suprafață închisă   și circulația în lungul unei curbe închise  , pentru vectorii câmp electric și câmp magnetic, de sarcina electrică   din volumul delimitat de  , de curentul electric   printr-o suprafață   delimitată de  , precum și de variația în timp a fluxului electromagnetic prin această suprafață.

Dimensiunile mărimilor electromagnetice și coeficienții cu care ele apar în ecuațiile lui Maxwell depind de sistemul de unități adoptat. Sistemul internațional de unități, utilizat cu preponderență în aplicații și pe care se bazează tabelul următor, definește două constante fizice fundamentale: permeabilitatea magnetică a vidului   și permitivitatea electrică a vidului  . În studiile teoretice sunt utilizate adesea sistemul de unități Gauss și sistemul de unități Heaviside-Lorentz.

Ecuațiile lui Maxwell (în forma generală)
ecuații diferențiale ecuații integrale
   
   
   
   

Ecuațiile lui Maxwell într-un mediu material

modificare

În tabelul precedent apar densitatea de sarcină și densitatea de curent totale; ele includ atât sursele libere (sarcini și curenți la scară macroscopică), cât și sursele legate (induse la scară microscopică în mediul material de câmpul electromagnetic, prin polarizare și magnetizare). În aplicații este convenabil să apară explicit doar sursele libere; celelalte sunt absorbite în două câmpuri auxiliare, câmpul electric indus   și câmpul magnetic indus  .[2] Prin aceasta numărul funcțiilor necunoscute se dublează; pentru a obține o soluție a ecuațiilor lui Maxwell trebuie specificată dependența câmpurilor induse de câmpurile fundamentale, prin relații de material de forma   și  . În tabelul care urmează, sursele libere (în engleză free) sunt distinse prin indicele f:   respectiv  

Ecuațiile lui Maxwell (într-un mediu material)
ecuații diferențiale ecuații integrale
   
   
   
   
  1. ^ The Scientific Papers of James Clerk Maxwell, pp. 554–562.
  2. ^ O parte din literatura de specialitate (de exemplu Jackson, p. 271) continuă să folosească denumirile tradiționale: deplasare electrică pentru   și câmp magnetic pentru  , iar câmpul magnetic   este redenumit, în mod impropriu, inducție magnetică. Această terminologie creează confuzie (Griffiths, p. 271).

Bibliografie

modificare
  • Feynman, Richard P.; Leighton, Robert B.; Sands, Matthew: The Feynman Lectures on Physics, New Millenium Edition, Vol. II, Basic Books, New York, 2010. ISBN 978-0-465-02414-8
  • Griffiths, David J.: Introduction to Electrodynamics, Pearson Cummings, San Francisco, 2008. ISBN 0-13-919960-8
  • Jackson, John David: Classical Electrodynamics, ed. 3-a, Wiley, New York, 1998. ISBN 0-471-30932-X
  • The Scientific Papers of James Clerk Maxwell, ed. W.D. Niven, Vol. I, Cambridge University Press, 1890, p. 500. e-book și e-book
  • Novacu, Valeriu: Electrodinamica, Editura didactică si pedagogică, București, 1966.
  • Stratton, Julius Adams: Electromagnetic Theory, McGraw-Hill, New York, 1941.

Vezi și

modificare

Legături externe

modificare