Deoarece aceasta este o ecuație neomogenă, soluția poate fi construită dintr-o soluție particulară plus soluția ecuației omogene. În acest caz, soluția omogenă este o funcție Bessel, iar soluția particulară poate fi aleasă ca funcția corespunzătoare Struve.
Funcția Struve de ordin întreg poate fi exprimată în termenii funcției WeberEn și vice-versa, dacă n nu este un întreg negativ:
Funcția Struve de ordinul n+1/2 (n un întreg) poate fi exprimată în termenii unei funcții elementare. În particular, dacă n nu este un întreg negativ, atunci:
unde partea dreaptă a egalității este o funcție Bessel sferică.
Funcția Struve (de orice ordin) poate fi exprimată în termenii funcției hipergeometrice1F2 (care nu este funcția hipergeometrică Gauss 2F1) :
Struve, H. (), Ann. Physik Chemie, 17: 1008–1016Lipsește sau este vid: |title= (ajutor)
R.M. Aarts and Augustus J.E.M. Janssen, "Approximation of the Struve function H1 occurring in impedance calculations" |journal= J. Acoust. Soc. Am. |volume= 113 |pages= 2635-2637 |year= 2003
Aarts, R.M. (), „Approximation of the Struve function H1 occurring in impedance calculations”, J. Acoust. Soc. Am., 113: 2635–2637Parametru necunoscut |other= ignorat (posibil, |others=?) (ajutor)