Modul de elasticitate cubică

proprietate fizică care arată rezistența unei substanțe la comprimare

În fizică modulul de elasticitate cubică, K,[1][2] este o măsură a deformațiilor elastice a volumului unui material și este definit prin raportul dintre diferența (infinitezimală) a creșterii presiunii la care este supus materialul și descreșterea (infinitezimală) a volumului său.[3]

Ilustrarea compresiunii uniforme

Alte module descriu deformările materialului la alte tipuri de tensiuni: modulul de elasticitate transversal descrie răspunsul la tensiunea tangențială, iar modul de elasticitate longitudinal descrie răspunsul la tensiunea normală (întindere sau compresiune pe lungime). Pentru un fluid, doar modulul de elasticitate cubică are sens. Pentru un solid anizotrop, cum ar fi lemnul sau hârtia, aceste trei module nu conțin suficiente informații pentru a-i descrie comportamentul și trebuie folosită legea lui Hooke generalizată completă. Inversului modulul de elasticitate cubică se numește compresibilitate. Pentru lichide, modulul de elasticitate cubică se definește la temperatură constantă, iar pentru gaze la entropie constantă.[4].

Definiție

modificare

Modulul de elasticitate cubică,  , care este de obicei pozitiv, poate fi definit formal prin ecuația

 

unde   este presiunea,   este volumul inițial al substanței, iar   este derivata presiunii în funcție de volum. Deoarece volumul este invers proporțional cu densitatea, rezultă că

 

unde   este densitatea inițială iar   este derivata presiunii în funcție de densitate. Inversului modulul de elasticitate cubică este compresibilitatea substanței.

Strict vorbind, modulul de elasticitate cubică este o mărime termodinamică, iar pentru a specifica un modul de elasticitate cubică este necesar să se precizeze modul în care presiunea variază în timpul compresiei: la temperatură constantă, entropie constantă sau în alte condiții. Pentru lichide se folosește compresibilitatea izotermă (adică la temperatură constantă). La gaze efectele compresibilității sunt mult mai importante, astfel că pentru ele se folosește compresibilitatea izentropică (la o transformare izoentropică, adică la o transformare la entropie constantă)[4] sau compresibilitatea adiabatică, adică la o transformare a sistemului termodinamic fără schimb de căldură cu exteriorul).

Pentru gazele ideale o transformare izoentropică este descrisă de relația

  constant   este proporțională cu  

unde   este exponentul adiabatic. Prin urmare, modulul de elasticitate cubică izentrop,   este dat de

 

Similar, o transformare izotermică a unui gaz ideal este descrisă de relația

  constant   este proporțională cu  

Prin urmare, modulul de elasticitate cubică izoterm,   este dat de

  .

Dacă gazul nu este ideal, aceste ecuații dau doar o aproximare a modulului de elasticitate cubică. Într-un fluid, modulul de elasticitate cubică   și densitatea   determină viteza sunetului   conform formulei Newton-Laplace

 

La solide,   și   au valori foarte asemănătoare. În solide pot să apară și unde transversale, motiv pentru care la determinarea vitezei sunetului în acestea este necesar un modul elastic suplimentar, cel de elasticitate transversal.

Valori pentru diferite materiale

modificare
Modulul de elasticitate cubică (K) pentru diferite materiale
Materiale comune Modulul de elasticitate cubică [GPa] Alte materiale Modulul de elasticitate cubică
Diamant (la 4K) [5] 443 β-nitrură de carbon 427±15 GPa[6] (prezis)
Alumină (faza γ)[7] 162 ± 14 Apă 2.2 GPa
Oțel 160 Metanol 823 MPa (la 20 °C și 1 atm)
Calcar 65 Heliu solid 50 MPa (aprox.)
Granit 50 Aer 142 kPa (adiabatic sau izentropic)
Sticlă 3555 Aer 101 kPa (izoterm)
Grafit 2H (cristalizat)[8] 34 Univers
(spațiu-timp)
4.5×1031 Pa
(pentru unde gravitaționale de 100 Hz)[9]
Clorură de sodiu 24.42
Șisturi cristaline 10
Cretă 9
Cauciuc[10] 1.52
Gresie 0.7
  1. ^ Gheorghe Buzdugan, Rezistența materialelor, Ed. a IX-a revizuită, București: Editura Tehnică, 1970, p. 199
  2. ^ Mihai Hlușcu, Pavel Tripa, [https://web.archive.org/web/20240203152634/http://www.mec.upt.ro/rezi/RM_I_Curs_Hluscu_Tripa.pdf Arhivat în , la Wayback Machine. Rezistența materialelor]] (curs Universitatea Politehnica Timișoara), Vol. I, Editura Mirton, 2014, ISBN: 978-973-521475-3, p. 248
  3. ^ en „Bulk Elastic Properties”. hyperphysics. Georgia State University. 
  4. ^ a b Bazil Popa ș.a., manualul inginerului termotehnician, București: Editura Tehnică, 1986, Vol. I, p. 36
  5. ^ en Charles Kittel, "Introduction to Solid State Physics, 8th edition", 2005, ISBN: 0-471-41526-X, p. 52
  6. ^ en Liu, A. Y.; Cohen, M. L. (1989). "Prediction of New Low Compressibility Solids". Science. 245 (4920): 841–842.
  7. ^ en Gallas, Marcia R.; Piermarini, Gasper J. (). „Bulk Modulus and Young's Modulus of Nanocrystalline γ-Alumina”. Journal of the American Ceramic Society (în engleză). 77 (11): 2917–2920. doi:10.1111/j.1151-2916.1994.tb04524.x. ISSN 1551-2916. 
  8. ^ en „Graphite Properties Page by John A. Jaszczak”. pages.mtu.edu. Accesat în . 
  9. ^ en Beau, M. R. (2018). "On the nature of space-time, cosmological inflation, and expansion of the universe". Preprint. DOI:10.13140/RG.2.2.16796.95364
  10. ^ en „Silicone Rubber”. AZO materials. 

Lectură suplimentară

modificare