Produs Khatri–Rao

operație binară pe matrici

În matematică produsul Khatri–Rao al matricilor este definit drept[1][2][3]

în care al ij-lea bloc este produsul Kronecker mipi × njqj al blocurilor corespunzătoare din A și B, presupunând că numărul partițiilor pe linii și coloane ale ambelor matrici este egal . Mărimea produsului este atunci i mipi) × (Σj njqj).

De exemplu, dacă ambele A și B sunt partiționate 2 × 2:

se obține:

Aceasta este o submatrice a produsului Tracy–Singh[4] dintre cele două matrici (fiecare partiție din acest exemplu este o partiție într-un colț al produsului Tracy–Singh) și poate fi numită și produsul Kronecker pe blocuri.

Produsul cu divizarea feței

modificare
 
Produs cu divizarea feței matricilor

Un concept alternativ al produsului matricial, care utilizează divizarea pe linii a matricilor cu un anumit număr de linii a fost propus de Vadim Sliusar[5] în 1996. [6][7][8][9][10]

Această operație matricială a fost numită „produsul cu divizarea feței” al matricilor[7][9] sau "produsul Khatri–Rao transpus". Acest tip de operație se bazează pe produse Kronecker linie cu linie din două matrici. Folosind matricile din exemplele anterioare partiționate pe linii:

 

rezultatul este:[6][7][9]

 

Principalele proprietăți

modificare
  1. Transpusa (V. Sliusar, 1996[6][7][8]):
     ,
  2. Biliniaritate și asociativitate:[6][7][8]
     

    unde A, B și C sunt matrici, iar k este un scalar,

     ,[8]
    unde   este un vector,
  3. Proprietatea produsului mixt (V. Sliusar, 1997[8]):
     ,
     ,[9]
     [11]
     ,[12]
    unde   indică produsul Hadamard,
  4.  ,[8]
  5.  ,[6] unde   este un vector-linie,
  6.  ,[12]
  7.  , unde   este matricea de permutări.[13]
  8.  
     ,[9][11]
    Similar:
     ,
  9.  
     ,[8]
     ,
    unde   și   sunt vectori,
  10.  ,[14]  ,
  11.  
     ,[15]
    unde   și   sunt vectori (este o combinare a proprietăților 3 și 8). Similar:
     
  12.  
     ,
    unde   este convoluția vectorilor, iar   este matricea Fourier⁠(d),
  13.  
     ,[16]
    unde   este matricea  ,   este matricea ,   este vectorul cu toate elementele de lungime 1  , iar   este vectorul cu toate elementele de lungime 1   sau
     ,[17]
    unde   este matricea  ,   indică îmmulțirea pe elemente, iar   este vectorul cu toate elementele de lungime 1  .
     ,
    unde   indică produsul cu penetrarea feței al matricelor.[9] Similar:
     ,
    unde   este matricea  , iar   este matricea  ,
  14.  
     ,[8]
     [9]=  ,
     ,[17]
    unde   este vectorul format din elementele de pe diagonala  ,   este stivuirea coloanelor matricei   una peste alta pentru a forma un vector.
  15.  
     .[9][11]
    Similar:
     ,
    unde   și   sunt vectori.
 

Aplicații

modificare

Produsul cu divizarea feței este utilizat în teoria matricei-tensor a matricei de antene digitale. Aceste operațiuni sunt utilizate și în:

  1. ^ en Khatri, C. G.; Rao, C. R. (). „Solutions to some functional equations and their applications to characterization of probability distributions”. Sankhya. 30: 167–180. Arhivat din original (PDF) la . Accesat în . 
  2. ^ en Liu, Shuangzhe (). „Matrix Results on the Khatri–Rao and Tracy–Singh Products”. Linear Algebra and Its Applications. 289 (1–3): 267–277. doi:10.1016/S0024-3795(98)10209-4 . 
  3. ^ en Zhang X; Yang Z; Cao C. (), „Inequalities involving Khatri–Rao products of positive semi-definite matrices”, Applied Mathematics E-notes, 2: 117–124 
  4. ^ en Liu, Shuangzhe; Trenkler, Götz (). „Hadamard, Khatri-Rao, Kronecker and other matrix products”. International Journal of Information and Systems Sciences. 4 (1): 160–177. 
  5. ^ en Anna Esteve, Eva Boj & Josep Fortiana (2009): "Interaction Terms in Distance-Based Regression," Communications in Statistics – Theory and Methods, 38:19, p. 3501 [1]
  6. ^ a b c d e en Slyusar, V. I. (). „End products in matrices in radar applications” (PDF). Izvestiya VUZ: Radioelektronika. 41 (3): 50–53. 
  7. ^ a b c d e en Slyusar, V. I. (). „Analytical model of the digital antenna array on a basis of face-splitting matrix products” (PDF). Proc. ICATT-97, Kyiv: 108–109. 
  8. ^ a b c d e f g h en Slyusar, V. I. (). „New operations of matrices product for applications of radars” (PDF). Proc. Direct and Inverse Problems of Electromagnetic and Acoustic Wave Theory (DIPED-97), Lviv.: 73–74. 
  9. ^ a b c d e f g h en Slyusar, V. I. (). „A Family of Face Products of Matrices and its Properties” (PDF). Cybernetics and Systems Analysis C/C of Kibernetika I Sistemnyi Analiz. 1999. 35 (3): 379–384. doi:10.1007/BF02733426. 
  10. ^ en Slyusar, V. I. (). „Generalized face-products of matrices in models of digital antenna arrays with nonidentical channels” (PDF). Radioelectronics and Communications Systems. 46 (10): 9–17. 
  11. ^ a b c en Vadym Slyusar. New Matrix Operations for DSP (Lecture). April 1999. – DOI: 10.13140/RG.2.2.31620.76164/1
  12. ^ a b en C. R. Rao. Estimation of Heteroscedastic Variances in Linear Models.//Journal of the American Statistical Association, Vol. 65, No. 329 (Mar., 1970), pp. 161–172
  13. ^ en Masiero, B.; Nascimento, V. H. (). „Revisiting the Kronecker Array Transform”. IEEE Signal Processing Letters. 24 (5): 525–529. Bibcode:2017ISPL...24..525M. doi:10.1109/LSP.2017.2674969. ISSN 1070-9908. 
  14. ^ en Kasiviswanathan, Shiva Prasad, et al. «The price of privately releasing contingency tables and the spectra of random matrices with correlated rows.» Proceedings of the forty-second ACM symposium on Theory of computing. 2010.
  15. ^ a b c en Thomas D. Ahle, Jakob Bæk Tejs Knudsen. Almost Optimal Tensor Sketch. Published 2019. Mathematics, Computer Science, ArXiv
  16. ^ a b en Eilers, Paul H.C.; Marx, Brian D. (). „Multivariate calibration with temperature interaction using two-dimensional penalized signal regression”. Chemometrics and Intelligent Laboratory Systems. 66 (2): 159–174. doi:10.1016/S0169-7439(03)00029-7. 
  17. ^ a b c en Currie, I. D.; Durban, M.; Eilers, P. H. C. (). „Generalized linear array models with applications to multidimensional smoothing”. Journal of the Royal Statistical Society. 68 (2): 259–280. doi:10.1111/j.1467-9868.2006.00543.x. 
  18. ^ en Bryan Bischof. Higher order co-occurrence tensors for hypergraphs via face-splitting. Published 15 February 2020, Mathematics, Computer Science, ArXiv
  19. ^ en Johannes W. R. Martini, Jose Crossa, Fernando H. Toledo, Jaime Cuevas. On Hadamard and Kronecker products in covariance structures for genotype x environment interaction.//Plant Genome. 2020;13:e20033. Page 5. [2]

Bibliografie

modificare
  • en Rao C.R.; Rao M. Bhaskara (), Matrix Algebra and Its Applications to Statistics and Econometrics, World Scientific, p. 216 
  • en Zhang X; Yang Z; Cao C. (), „Inequalities involving Khatri–Rao products of positive semi-definite matrices”, Applied Mathematics E-notes, 2: 117–124 
  • en Liu Shuangzhe; Trenkler Götz (), „Hadamard, Khatri-Rao, Kronecker and other matrix products”, International Journal of Information and Systems Sciences, 4: 160–177 

Vezi și

modificare