Funcția beta

funcție matematică

În matematică, funcția beta este o funcție specială, înrudită cu funcția gamma, întâlnită în calcularea mai multor integrale definite. Este o funcție cu două variabile și este definită pentru și astfel:

Graficul funcției B(x,y) cu argumente reale pozitive.

Definiții alternative

modificare

Ca urmare,

Această definiție este valabilă și pentru numerele complexe care au părțile reale pozitive și a fost dată de către Euler în 1730. Numele de funcție beta a fost introdus de către Jacques Philippe Marie Binet în 1839, el aducând mari contribuții la studiul acesteia.

Funcția beta este simetrică și și poate fi calculată cu ajutorul funcției gamma datorită proprietății:

Proprietate

modificare

Fie   și  . Atunci,


 


Valori particulare ale funcției beta

modificare
 ,


 ,


 ,


 ,


 ,


Pentru  , avem:

 ,


 .

Integralele Wallis

modificare

Integralele Wallis au următoarea formă generală:

 

Ele pot fi calculate cu ajutorul funcțiilor beta și gamma.

Legături externe

modificare