În geometrie, Teorema lui Stewart furnizează o relație între lungimile laturilor unui triunghi și lungimea segmentului ceviană dintr-un vârf la un punct de pe latura opusă.

Fie a, b și c laturile unui triunghi. Fie p un segment din punctul A în punctul P de pe latura a care divide această latură în segmentele x and y. Atunci:

Reprezentare grafică

Demonstrație

modificare

Fie P punctul în care latura a și segmentul p se intersectează. Prin aplicarea teoremei cosinusului pentru unghiurile suplementare APB și APC se obțin egalitățile:

 
 

Înmulțind prima relație cu x, iar a doua cu y  rezultă:

 
 

Apoi adunând cele două ecuații:

 

se obține teorema lui Stewart.

Forma vectorială

modificare

Dacă M este un punct pe latura BC a triunghiului ABC, atunci:

 

sau altă formă:

 

O altă formă simetrică este următoarea:

Dacă punctele A, B, C sunt coliniare, iar P un punct oarecare, atunci:

 

Vezi și

modificare

Legături externe

modificare