Marele icosicosidodecaedru

poliedru uniform neconvex cu 52 de fețe
Marele icosicosidodecaedru
(model 3D)
Descriere
Tippoliedru uniform neconvex
Fețe52 (20 triunghiuri,
      12 pentagoane,
      20 hexagoane)
Laturi (muchii)120
Vârfuri60
χ−8
Configurația vârfului5.6.3/2.6[1]
Simbol Wythoff3/2 5 | 3[1] sau 3 5/4 | 3
Diagramă Coxeter
Grup de simetrieIh, [5,3], (*532) [1]
Volum≈11,615 a3   (a = latura)
Poliedru dualmarele hexacontaedru icosacronic
Proprietățiuniform, neconvex
Figura vârfului

În geometrie marele icosicosidodecaedru este un poliedru stelat uniform, cu indicele U48. Are 52 de fețe (20 de triunghiuri, 12 pentagoane și 20 de hexagoane), 120 de laturi și 60 de vârfuri.[1] Un poliedru neconvex are fețe care se intersectează care nu reprezintă laturi sau fețe noi. Doar cele marcate cu sfere aurii sunt vârfuri, iar cele cu linii argintii sunt laturi. Având 52 de fețe este un pentacontadiedru.

Are simbolul Wythoff 3/2 5 | 3[1] sau 3 5/4 | 3 și diagrama Coxeter–Dynkin .

Figura vârfului este un antiparalelogram.

Mărimi asociate

modificare

Coordonate carteziene

modificare

Având în comun vârfurile cu dodecaedrul trunchiat, coordonatele carteziene ale vârfurilor unui dodecaedru trunchiat cu lungimea laturii 2φ − 2, centrat în origine,[2][3] sunt toate permutările pare ale:

 
 
 

unde   este secțiunea de aur.

Raza sferei circumscrise

modificare

Raza sferei circumscrise pentru lungimea laturii a este:[4]

 

Următoarea formulă pentru volum V este stabilită pentru lungimea laturilor tuturor poligoanelor (care sunt regulate) a:

 

Poliedre înrudite

modificare

Are în comun aranjamentul vârfurilor cu dodecaedrul trunchiat. În plus, are în comun aranjamentul laturilor cu marele dodecicosidodecaedru ditrigonal (având fețele triunghiulare și pentagonale în comun) și cu marele dodecicosaedru (având în comun fețele hexagonale).

 
Dodecaedru trunchiat
 
Marele icosicosidodecaedru
 
Marele dodecicosidodecaedru ditrigonal
 
Marele dodecicosaedru
 
Dual: Marele hexacontaedru icosacronic

Poliedru dual

modificare

Dualul său este marele hexacontaedru icosacronic.[5]

  1. ^ a b c d e en Maeder, Roman. „48: great icosicosidodecahedron”. MathConsult. Accesat în . 
  2. ^ en Coxeter, H.S.M. Regular Polytopes (third edition), Dover Publications Inc, 1973 ISBN: 0-486-61480-8, p. 52, §3.7 Coordinates for the vertices of the regular and quasi-regular solids
  3. ^ en Eric W. Weisstein, Icosahedral group la MathWorld.
  4. ^ en Eric W. Weisstein, Great icosicosidodecahedron la MathWorld.
  5. ^ en Wenninger, Magnus (), Dual Models, Cambridge University Press, doi:10.1017/CBO9780511569371, ISBN 978-0-521-54325-5, MR 0730208 

Vezi și

modificare

Legături externe

modificare