Pavare apeirogonală de ordinul 2

În geometrie o pavare apeirogonală de ordinul 2, un diedru apeirogonal sau diedru infinit[1] este o teselare a planului constând din două apeirogoane și având simbolul Schläfli {∞, 2}. Poate fi considerată o pavare regulată improprie a planului euclidian. Două apeirogoane, unite de-a lungul tuturor laturilor lor, pot umple complet întregul plan, deoarece un apeirogon are o dimensiune infinită și are un unghi interior de 180°, care este jumătate din spațiul complet de 360°.

Pavare apeirogonală

Pavare apeirogonală de ordinul 2
TipPoligon regulat sau
pavare sferică
Laturi și vârfuri
Simbol Schläfli{∞,2}
Diagramă Coxeter
Grup de simetrie[∞,2], (*∞22)
Grup de rotație[∞,2]+, (∞22)
Poligon dualhosoedru apeirogonal

Pavări și poliedre înrudite

modificare
 
Hosoedru apeirogonal

Dualul său este hosoedrul apeirogonal.

Pavarea apeirogonală este limita aritmetică a familiei de diedre {p, 2}, deoarece p tinde la infinit, transformând astfel diedrul într-o pavare euclidiană.

Similar cu poliedrele uniforme și pavările uniforme, opt pavări uniforme pot fi făcute cu pavări apeirogonale regulate. Formele rectificate și cantelate sunt duplicate și, deoarece de două ori infinit este tot infinit, trunchierea și formele omnitrunchiate sunt, de asemenea, duplicate, reducând astfel numărul de forme unice la patru: pavare apeirogonală, hosoedrul apeirogonal, prisma apeirogonală și antiprisma apeirogonală.

Pavări apeirogonale regulate sau uniforme de ordinul 2
(∞ 2 2) Părinte Trunchiat Rectificat Bitrunchiat Birectificat
(dual)
Cantelat Omnitrunchiat
(cantitrunchiat)
Snub
Simbol Wythoff 2 | ∞ 2 2 2 | ∞ 2 | ∞ 2 2 ∞ | 2 ∞ | 2 2 ∞ 2 | 2 ∞ 2 2 | | ∞ 2 2
Simbol Schläfli {∞,2} t{∞,2} r{∞,2} t{2,∞} {2,∞} rr{∞,2} tr{∞,2} sr{∞,2}
Diagramă Coxeter–Dynkin                                                
Configurația vârfului ∞.∞ ∞.∞ ∞.∞ 4.4.∞ 2 4.4.∞ 4.4.∞ 3.3.3.∞
Imagine pavare                
Numele pavării „Diedru” apeirogonal „Diedru” apeirogonal „Diedru” apeirogonal „Prismă” apeirogonală „Hosoedru” apeirogonal „Prismă” apeirogonală „Prismă” apeirogonală „Antiprismă” apeirogonală
  1. ^ Conway (2008), p. 263

Bibliografie

modificare
  • en John H. Conway, Heidi Burgiel, Chaim Goodman-Strauss, The Symmetries of Things, CRC Press, 2008, ISBN: 978-1-56881-220-5

Vezi și

modificare

Legături externe

modificare