Trisectoarea lui Maclaurin

curbă cubică plană cunoscută prin proprietatea sa de a trisecta unghiurile

În geometria algebrică trisectoarea lui Maclaurin este o curbă plană cubică notabilă pentru proprietatea sa de a diviza în trei, ceea ce înseamnă că poate fi folosită pentru trisecțiunea unui unghi.[1] Poate fi definită ca locul geometric al punctului de intersecție a două drepte⁠(d), fiecare rotindu-se cu o viteză unghiulară uniformă în jurul punctelor lor fixe, separate, astfel încât raportul vitezelor de rotație să fie 1:3 iar dreptele coincid inițial cu dreapta care trece prin cele două puncte.[2] O generalizare a acestei construcții se numește curbă divizoare a lui Maclaurin. Curba poartă numele lui Colin Maclaurin care a studiat curba în 1742.[3][4]

Trisectoarea lui Maclaurin ca loc geometric al intersecției a două drepte care se rotesc

Ecuații

modificare

Fie două drepte care se rotesc în jurul punctelor   și   astfel încât, atunci când dreapta care se rotește în jurul punctului său fix   formează cu axa Ox unghiul  , iar dreapta care se rotește în jurul punctului său fix   formează cu axa Ox unghiul  . Dacă Q este punctul de intersecție al dreptelor, atunci unghiul format de drepte în Q este  . Din teorema sinusurilor,

 

rezultă ecuația în coordonate polare, care este (fără ca axele să fie translate sau rotite)

 .

Prin urmare, curba este un membru al familiei de concoide ale lui de Sluze.

În coordonate carteziene ecuația acestei curbe este[4]

 .

Dacă originea este mutată în (a, 0), atunci un raționament similar cu cel de mai sus arată că ecuația curbei în coordonate polare devine

 

fiind un exemplu de „melc” cu o buclă.

Proprietatea de a fi o trisectoare

modificare
 
Trisectoarea lui Maclaurin demonstrând proprietatea de a trisecta unghiurile

Din punctul   se trasează o dreaptă care formează cu axa Ox unghiul  . Din origine se trasează o dreaptă prin punctul unde dreapta precedentă intersectează curba. Atunci, prin construcția curbei, unghiul dintre a doua dreaptă și axa Ox este  .[2]

Puncte și caracteristici notabile

modificare

Curba are o intersecție cu axa Ox în   și un punct dublu în origine. Dreapta verticală   este o asimptotă. Curba intersectează dreapta x = a sau punctul corespunzător trisecțiunii unui unghi drept, în  . Ca o cubică nodală, este de genul zero.

Relația cu alte curbe

modificare

Trisectoarea lui Maclaurin poate fi definită cu ajutorul conicelor în trei moduri.

 .
 
și a dreptei   față de origine.
 .

În plus:

  1. ^ en J. Dennis Lawrence (). A catalog of special plane curves . Dover Publications. pp. 36,95,104–106. ISBN 0-486-60288-5. 
  2. ^ a b en Maclaurin Trisectrix at mathcurve.com
  3. ^ a b en Eric W. Weisstein, Maclaurin Trisectrix la MathWorld.
  4. ^ a b c en "Trisectrix of Maclaurin" at MacTutor's Famous Curves Index

Legături externe

modificare