Prismă octogonală

a șasea prismă din mulțimea prismelor, cu fețe laterale pătrate și baze octogoane regulate
Prismă octogonală uniformă
(model 3D)
Descriere
Tippoliedru uniform, U76f
Fețe10 (2 octogoane,
      8 pătrate)
Laturi (muchii)24
Vârfuri16
χ2
Configurația vârfului4.4.8
Simbol Wythoff2 8 | 2
2 2 4 |
Simbol Schläflit{2,8} sau {8}×{}
Diagramă Coxeter


Grup de simetrieD8h, [8,2], (*822), ordin 32
Grup de rotațieD8, [8,2]+, (822), ordin 16
Arie
Volum
Poliedru dualbipiramidă octogonală
Proprietățiconvexă
Figura vârfului
Desfășurată

În geometrie prisma octogonală este o prismă cu baza octogonală. Are 10 fețe, 24 de laturi și 16 vârfuri.[1] Deoarece are 10 fețe, în principiu este un decaedru.

Dual: bipiramidă octogonală

Prisma octogonală uniformă are indicele de poliedru uniform U76f.[2]

Ca poliedru semiregulat (sau uniform)

modificare

Dacă fețele sunt toate regulate, prisma octogonală este un poliedru semiregulat, mai general, un poliedru uniform, fiind a șasea într-un set infinit de prisme formate din fețe laterale pătrate și două baze poligoane regulate. Poate fi văzut ca un hosoedru octogonal trunchiat, reprezentat de simbolul Schläfli t{2,8}. Alternativ, poate fi văzut ca produsul cartezian al unui octogon regulat și al unui segment, și reprezentat prin produsul {8}×{}. Dualul unei prisme hexagonale este o bipiramidă octogonală.

Ca la toate prismele, aria totală A este de două ori aria bazei (Ab) plus aria laterală, iar volumul V este produsul dintre aria bazei și înălțimea (distanța dintre planele celor două baze) h.

Pentru o prismă cu baza octogonală regulată cu latura a, aria A are formula:[3]

 

Pentru a = 1 și h = 1 aria este 17,6568543.

Formula volumului V este:[3]

 

Pentru a = 1 și h = 1 volumul este 4,8284271.

Simetrie

modificare

Grupul de simetrie al unei prisme octogonale drepte este D8h de ordinul 32. Grupul de rotație este D8 de ordinul 16.

Variante de simetrie
Nume Prismă ditetragonală Trapezoprismă ditetragonală
Imagine    
Simetrie D4h, [2,4], (*422) D4d, [2+,8], (2*4)
Construcție tr{4,2} sau t{4}×{},       s2{2,8},      
 
Prisma octogonală ca poliedru sferic

Prisma octogonală poate fi văzută și ca o pavare a sferei.

Utilizare

modificare

În optică prismele octogonale sunt folosite pentru a genera imagini fără pâlpâire în proiectoarele de filme.

Faguri uniformi și 4-politopuri

modificare

Prisma octogonală apare ca celule în trei faguri uniformi:

     
Fagure cubic prismatic trunchiat
         
Fagure cubic omnitrunchiat
       
Fagure cubic runcitrunchiat
       

De asemenea, apare ca celule în două 4-politopuri uniforme:

   
Tesseract runcitrunchiat
       
Tesseract omnitrunchiat
       

Poliedre înrudite

modificare
Familia prismelor n-gonale uniforme
Denumirea prismei Prismă digonală Prismă triunghiulară Prismă tetragonală Prismă pentagonală Prismă hexagonală Prismă heptagonală Prismă octogonală Prismă eneagonală Prismă decagonală Prismă endecagonală Prismă dodecagonală ... Prismă apeirogonală
Imagine                       ...
Pavare sferică                 Pavare plană  
Config. vârfului 2.4.4 3.4.4 4.4.4 5.4.4 6.4.4 7.4.4 8.4.4 9.4.4 10.4.4 11.4.4 12.4.4 ... ∞.4.4
Diagramă Coxeter                                                                   ...      
Variante de pavări omnitrunchiate cu simetrie *n42: 4.8.2n
Simetrie
*n42
[n,3]
Sferice Euclidiană Hiperbolice compacte Paracomp.
*242
[2,4]
*342
[3,4]
*442
[4,4]
*542
[5,4]
*642
[6,4]
*742
[7,4]
*842
[8,4]...
*∞42
[∞,4]
Figuri
omnitrunchiate
 
4.8.4
 
4.8.6
 
4.8.8
 
4.8.10
 
4.8.12
 
4.8.14
 
4.8.16
 
4.8.∞
Duale
omnitrunchiate
 
V4.8.4
 
V4.8.6
 
V4.8.8
 
V4.8.10
 
V4.8.12
 
V4.8.14
 
V4.8.16
 
V4.8.∞
  1. ^ en Pugh, Anthony (), Polyhedra: A Visual Approach, University of California Press, pp. 21, 27, 62, ISBN 9780520030565 .
  2. ^ en Eric W. Weisstein, Uniform Polyhedron la MathWorld.
  3. ^ a b de Regelmäßiges Prisma - Rechner, rechneronline.de, accesat 2022-07-03

Vezi și

modificare

Legături externe

modificare